

Our Approach

AUSTRALIA – DESIGN MAKE

2016

2017

2018

2019

2020

FORTE APARTMENTS, VIC

LIBRARY AT THE DOCK, VIC INTERNATIONAL HOUSE ,NSW

JORDAN SPRINGS, COMMUNITY CENTRE, NSW D MARIE REA

MARIE REAY CENTRE, ACT

FENNER HALL, ACT

DARAMU HOUSE, NSW MELBOURNE CONNECT, VIC

UNITIED STATES – DESIGN BUILD

2015

2016/2018

2017

2018 2019 2019 2020

UNITED KINGDOM – DESIGN BUILD/CM

WHERE IS THE SWEET SPOT?

Variables that affect CLT's ability to be cost competitive include:

- The dominant structural system(s) CLT is competing against which is typically determined by
 - Regional availability of competing materials and labor
 - Market Segment norms
- Specific market/project conditions that CLT can address
 - high cost of labor
 - labor shortage
 - schedule constraints
 - poor soil conditions

FILLING IN THE HEIGHT SPECTRUM

STRUCTURAL TYPOLOGIES

2021 CODE CONST. TYPE

18 STORY R/ 20 STORY B

Type IV-A

Completely protected in sheet rock

12 STORY R & B

- Type IV-B
- Exposed surfaces limited to 40% wall area and 20% ceiling area
- Concealed spaces area to be fully protected by non-combustible

9 STORY R & B • Type IV-C

- Exposed surfaces unlimited
- Concealed spaces area to be fully protected by non-combustible

5 STORY R/ 6 STORY B

- Type IV
 - Exposed surfaces unlimited
 - No concealed spaces for IV
- Type III
 - Exposed surfaces permitted with
 FRR
 - Concealed spaces permitted

GRAVITY TYPOLOGY

HIGH RISE

Open flat plate
Hybrid post and beam gravity system

MID-HIGH RISE

- CLT Bearing wall
- Open flat plate
- Wood or Hybrid post and beamPerimeter/ interior frame

MID-LOW RISE

- CLT Bearing wall
- Mixed Light frame/CLT bearing wall
- Wood or Hybrid post and beam gravity system

LATERAL TYPOLOGY

HIGH RISE

- Traditional Lateral core
- Perimeter/Interior frame
- Link beam*

MID-HIGH RISE

- Honeycomb*
- Rocking wall
- Lateral core
- Perimeter/ interior frame
- CLT shear wall

MID-LOW RISE

- CLT shear wallLight frame shear wall
- Perimeter/ interior frame

PLATFORM FRAMED

	CLT I	ight	
PAL PORTFOLIO	TYPICAL NEW PAL HOTEL (ACTUAL*)	FT. DRUM (ACTUAL)	DIFFERENCE
Gross SF	54,891	65,776	+20%
Average # of Employees	18 (Peak 26)	10	-44%
Structural Duration (Days)	123	93	-24%
Structural Man Hours	14,735	9,715	-34%
Structural Production Rate/Day (SF)	460 SF/day	708 SF/day	+54%

	CLT H	eavy	
PAL PORTFOLIO	TYPICAL NEW PAL HOTEL (ACTUAL*)	REDSTONE ARSENAL (ACTUAL)	DIFFERENCE
Gross SF	54,891	62,688	+14%
Average # of Employees	18 (Peak 26)	10 (Peak 11)	-43%
Structural Duration (Days)	123	78	-37%
Structural Man Hours	14,735	8,203	-44%
Structural Production Rate/Day (SF)	460 SF/day	803 SF/day	+75%

* PAL New Build Hotel Historical Average w/ Light Gauge Metal

PROJECT SCHEDULE COMPRESSION - Critical Path

ACOUSTIC PERFORMANCE

	Summary of Test Results		
Test Area	Test Area Description	FIIC	ASTC
1	Demising Wall between Kitchen/Living Areas of Units 220 and 222		55
2	Demising Wall between Kitchen/Living Areas of Units 224 and 222		54
3	Floor/Ceiling assembly between Kitchen/Living Area of Units 222 and 322		54
4	Floor/Ceiling assembly between Kitchen/Living Areas of Units 322 and 222 (LVT plank)	56	
5	Floor/Ceiling assembly between Kitchen/Living Areas of Units 322 and 222 (carpet with pad)	74	
6	Floor/Ceiling assembly between Bathroom Areas of Units 322 and 222	60	

ENERGY PERFORMANCE

Building Shell	Wall Assembly R- Value	Roof Assembly R- Value	Annual Energy Use (kBtu/yr)	Energy Use
Steel Frame 6" Batt	15.7	41.7	484,407	100.00%
CLT Panel	21.5	42.6	306,400	63.25%

IN HIGH SEISMIC REGIONS

PERSCRIPTIVE CLT SHEARWALLS ARE PROBLEMATIC.....

- 1. High Aspect Ratio requirements defeat the schedule and/or labor advantage
- 2. Connections are prescribed as conventional
- 3. Non shear walls still have to conform to detailing
- 4. R-values are low
- 5. Height is limited

POST AND BEAM

20' X 30' OR 20' X 26' PRIMARY BEAM & FLAT SLAB FLOOR: 40' (L) x 7.5' (W) DELIVERY: 8x floors per standard truck

30' X 30' OR 24' X 24' PRIMARY BEAM RIB DECK SLAB RIBDECK: ~32' (L) X 10' (W) DELIVERY: ~ 3x RIBDECKS PER OVERSIZE TRUCK

GRID SYSTEMS COMPARISON

GRID	ADVANTAGES	DISADVANTAGES
20'x26'& 20'x30'	 Volume reduction in glulam beams Simple floor slab processing Flat soffit Less penetration co-ordination in floor 	 Smaller grid Volume increase in glulam columns Slower install
24'x24'& 30'x30'	 Volume reduction in glulam columns Decrease in CLT panel thickness Greater services distribution. Faster install 	 Volume increase in glulam beams More penetration co-ordination in floor. Pre-assembly required, transport inefficiency as a result

20'X30' GRID INTERNATIONAL HOUSE COLUMN/BEAM/SLAB

20'X30' GRID 25 KING COLUMN/BEAM/SLAB

30'X30' GRID COLUMN/BEAM/RIBDECK

Rethinking Podium Typology

- Load transfer deck vs. 3hr fire separation
- Differences in where Assembly
 Occupancy is permitted
- Upper building offsets

\$4 \$4 \$4 \$4 \$4 \$6	8/sf 8/sf 8/sf 8/sf 5/sf	\$52/sf \$52/sf \$52/sf \$52/sf \$52/sf \$52/sf
\$6 5	5/sf	\$65/sf
Averag	e \$54/sf	Average \$54/sf

BATHROOM POD

Componentization of more than Structure

Synergy in further componentization:

- Same equipment and crew can do installation
- precision and installed dimensional reliability create opportunity for other offsite pre-fabrication
- preplanning and coordination required to design a prefabricated structure sets the ground work for coordinating of prefab'ed services, façades and finishes

Addition savings:

- Reducing the rate of schedule uncertainty can have a significant impact reducing project overruns
- CLT enables more work to carry on even in severe weather conditions AND in safer conditions
- Reductions in the number of change orders
- saving 10% off of the total project schedule has the potential to save .5-.75% off general conditions

MAKING A COMPELLING COST COMPARISON

- 1. Consider the Cost Baseline
- 2. Be Material Efficient and Optimize Systems
- 3. Capitalize on the Labor Advantage
- 4. Amplify the Schedule Compression
- 5. Quantify of the Value Proposition
- 6. Compare TOTAL COST

Recommendations

Partner early. Find experienced partners.

Limit your design objectives. Be prepared to compromise on the others.

You won't solve it in one project.

Spend time educating.

Be prepared to do everything different.

Thank You

