

Welcome! \rightarrow We are recording. RDH RDH \rightarrow Some FAQs: ightarrow You will get a follow-up email regarding how to access the recording and a pdf of slides. ightarrow If you need a completion certificate for self-reporting or EPP and/or AIA or AIBC credits, please follow the link in the chat box to let us know. \rightarrow Please use chat for housekeeping questions. \rightarrow Please use Q&A box for questions for the speaker. \rightarrow We will break at the end for questions. \rightarrow Use upvote feature to let us know what you're most curious about! More guestions? Please contact us at events@learnbuildingscience.com. RDH

TWENTY-FIVE YEARS | ESTABLISHED 1996

David Riley

ASSOCIATE

David excels on projects that present a unique challenge, and where data can be employed to shape meaningful design solutions. It comes from his commitment to being a team player, both as a part of and leading teams through the complexities of the design process. His ability deliver thoughtful solutions is bolstered by his project management training and background. David is currently involved in the engineering and design of major mechanical building systems which include HVAC, plumbing and fire protection systems. Whether post secondary, corporate or residential work, all of David's projects reflect the priority he places on integrated solutions.

Kristen Yee Loong

ASSOCIATE, ENERGY AND SUSTAINABILITY SPECIALIST

Kristen brings an invaluable depth of knowledge to the team with her experience on large multi-disciplinary projects. Her expertise includes consulting on energyefficient system design strategies for net zero energy, net zero carbon, and other high-performance buildings. She supports the development of sustainability goals, simulating the whole-building energy use throughout the design process as well as developing building monitoring strategies to support post-construction performance verification. Her work with whole-building energy analysis includes assessments of existing buildings to identify areas where energy consumption and carbon emissions can be reduced to achieve deep energy retrofits, which includes capital and life cycle cost analyses to develop zero over time solutions.

RDH

· · · · · · · · ·

Disclaimer

This material is intended to be used for reference, continuing education, and training purposes only. Neither RDH Building Science, Inc., nor the persons presenting the material, make any representation or warranty of any kind, express or implied, with regard to whether the material is appropriate for, or applies to, any specific project circumstance or condition.

Applicable and current laws, codes, regulations, standards and policies, as well as project and site-specific conditions, procedures and circumstances when applying the information, details, techniques, practices and procedures described in this material.

© RDH Building Science, Inc. 2021

All rights reserved. No part of this presentation may be reproduced or transmitted in any form by any means, electronic, mechanical, photocopy, recording, or other without prior written permission.

For permissions to use this content, email onlinelearning@rdh.com.

RDH

Building Science Live - Yee Loong, Hauser, Riley

Building Science Live - Yee Loong, Hauser, Riley

	Annual Energy Consumption				GHG Emissions*	Annual Energy Cost		
	Electricity (kWh)	Natural Gas (ekWh)	Total Energy (ekWh)	ekWh/m2	kg/m²	Total (\$)	\$/ft2	
SB-10 Baseline - Hydronic VAV	471,300	515,400	986,900	150	17.76	\$91,600	\$1.30	
Option 1 Distributed WLHP	419,200	257,200	676,400	103	10.27	\$77,400	\$1.09	Vhdufwhg
Option 2 Distributed GSHP	491,400	-	491,400	75	3.74	\$80,500	\$1.14	Uhfrp p hqghq
Option 3 - Hybrid Water-Cooled VRF	458,400	-	458,400	70	3.49	\$75,900	\$1.07	
Option 4 Air source VRF	490,900	~	490,900	75	3.73	\$83,300	\$1.18	
Option 5 - Hybrid Distributed GSHP	491,000	-	491,000	75	3.73	\$80,100	\$1.13	

Capital Cost Estimates

	Capital Cost			
	Capital Cost	\$/ft2	delta-Cost	
SB-10 Baseline VAV	\$1,781,000	\$25		
Option 1 - Distributed WLHP	\$1,254,000	\$18	-\$527,000	Vhdafwhg
Option 2 - Distributed GSHP	\$1,242,000	\$18	-\$540,000	Uhfrp p hqghg
Option 3 - Hybrid Water-Cooled VRF	\$1,737,000	\$25	-\$44,000	
Option 4 - VRF ASHP	\$1,200,000	\$17	-\$581,000	
Option 5 - Hybrid Distributed GSHP	\$1,371,000	\$19	-\$410,000	

RDH

2022-04-18

Price on Pollution – 2017?

Carbon Price Scenarios (2017 Mindset)

\$0/tonne	(2017 Actual)

\$15/tonne (Something Modest)

\$50/tonne (Applying Pressure)

\$100/tonne (No Way Will It Ever....)

RDH

48

Jurisdiction	Goal	Timing	
New York City Local Law 97	Cut carbon emissions by over 80 percent. Buildings that do not comply will face fines set at \$268 per ton of emissions	By 2050	
City of Boston Building Emissions Reduction	Energy and emissions reporting for all buildings over 20,000sf	By 2022	
and Disclosure Ordinance	50% carbon emissions reduction	By 2030	
(BERDO)	Net Zero carbon emissions	By 2050	
Washington State Clean Buildings Act	Reduce GHG emissions from the building sector (large commercial)	2020, with phased implementation	
City of Vancouver Climate Emergency Response Plan	All new and replacement heating and hot water systems will be zero emissions	By 2025	
Toronto 2030 District and Transform TO	Net Zero GHG emissions	By 2050	
Pan-Canadian Framework on Clean Growth and Climate Change	Develop an energy code for existing building – may require the start of retrofits, labelling, financing	Existing Building Energy Code by 2022	

